

EMI ANALYSIS DEBUGGING SOLUTION

This papers is prepared for understanding about EA-2100 and its operation

EMCIS CO., LTD

EMCIS Building, 77 Dukchun-ro Manan-gu, Anyang-si Kyunggi-do, Korea 14086 TEL : 031-444-0058 FAX : 031-465-0058 Web site : www. emcis.co.kr e-mail : emcis@emcis.co.kr

EA-2100 operation

Basic system Configuration ;

- EMI Receiver (any brand can be used with our EA-2100)
- LISN requires two ports

Front control panel of LN2-16N

EA-2100 operation

- EA-2100 has "TEST" & "ANALYSIS" Mode
- On "TEST" Model, measure L1, and L2 with EMI Receiver
- Select one of them, L1 or L2, measured as the higher noise
- Select "ANALYSIS" Mode ; Default is "LOW" and "CM[ON]"
- Measure Common-Mode Noise

Default screen

EMCIS EMI Analyzer has two selectable frequency ranges ;

LOW : from 9KHz to 30MHz - Principle range for CE

HIGH : from 30MHz to 300MHz ; by extracting the noise in this range and by viewing the spectrum , the user can obtain an indication about potential RE noise sources, as detected at the origin.

*RE measurement is from 30MHz to 1.8GHz, but most of RE noise is detected below 300MHz..... Based on this strategy, the EMI Analyzer is designed for the extended range, up to 300MHz

ANALYSIS LOW

Analysis Mode

If the supply is 3ph and the standard single phase LISN is used with EA-2100, then measure all lines by selecting them in pairs and proceeding as above, same as 1ph/2P LISN case.

L1 or L2 Noise (Total Noise)

DM Mode Noise

EA-2100 operation

- Check how much the noise is over the limit line
- Decide how much you want to reduced the noise
- Select CM Mode Components you achieve your target

- Select 1st Highest Noise point at the lowest frequency (close to the start frequency of the measurement range)
- The components selected for the target will work for the noise in the measured frequency range
 - the characteristics of components Impedance curve

- Do same process for Differential-Mode Noise
- Design and make the EMI filter with your selected components
- Measure the results (L1, L2, CM, and DM)
- Modify the EMI filters accordingly
- Finalize the EMI filter

Designed Filter

Filter Test Kit (FTK-05)

The FTK-05 enables filter design / components selection to be tested quickly and easily.

User can insert selected components in the kit and check the effect on the noise levels. User can therefore configure and test a range of components to optimize filter design.

Note that this 'breadboarded' filter and a final manufactured version installed in the product may have differing results because of filter location, cable and & other reasons... But, it can give the guidance to the customers in filter design

Preparation – System Set Up

- Set up the system = EMI Receiver + EA-2100 + FTK-05 + LISN
- Set up EMI Receiver to suit your selected measurement condition

Most EMI Receivers have EMI software which will display the limit lines, frequency ranges, detectors, dwell times and RBW as appropriate.

- Check the ground of each unit/item = **Good ground condition is Important**
- Power Line Filter is recommended to protect any outer noise influence

Components Selection – CM Mode – Understanding the components

- Impedance is the Key parameter of the Component
- Other factors such as stray capacitance, leakage and series resistance will affect the performance of the filter.
- Testing of the design will enable these secondary factors to be taken into account and used to greatest benefit.

- Select any of CM Mode Components you have
- Apply it(them) on FTK
- Measure the results.

Components Selection – DM Mode – Understanding the components

- Capacitance is the key characteristic of the component
- But there are secondary characteristics that will affect performance.
- Optimize the design by considering/using these secondary factors

X-Capacitor

X-Capacitor + DM Choke Coil

Components Selection –DM Mode

- Select any of DM Mode Components you have
- Apply it on FTK
- Measure the results.

Measurement - Final

Line 1

Designed Filter

Analysed and Solved

EA - 2100

Specification

Frequency Range	9kHz ~ 30MHz (Low) 30MHz ~ 300MHz (High)		
Mode Selector	(Line 1, Line 2)		
Analysis Mode	Differential, Common		
Signal Tracking Loss	9kHz~30MHz < 2dB 30MHz~300MHz < 3dB		
CM/DM Separation	9kHz~30MHz > 40dB 30MHz~300MHz > 30dB		
Signal Input Sensitivity	-97dBm (10dBuV)		
Noise Level	<10dBuV Max		
Max RF Input Level	0dB attenuator (110dBuV)		
Input Dynamic Range	100dB		
Display	Front panel VFD display		
Front panel control	4 Button control		
Input Impedance	50Ω		
Power Input Voltage	AC100V~240V 50/60Hz		
Input Connectors	BNC 50Ω		
Output Connectors	BNC 50Ω		
Dimension	W365 D330 H150 (mm)		
Weight	6.6 kg		

FTK-05

EUT Voltage	220VAC, 1Ph, 60Hz		
Rated Current	5A		
Power Inlet	Power Code		
Power Outlet	Terminal		
Operation Temp.(°C)	.+5 ~ +40		
Humidity(RH)	20% ~ 80%		
Dimension(mm)	364W x 54H x 112D		
Weight	1.6kg		

ETS Debugging Station

2nd Generation EMI ANALYZER

Contractor and a

- 1. Measure Total Mode Noise
- 2. CM, DM Noise Analysis
- 3. Source Impedance Analysis
- 4. Analysis of each components
- 5. EMI Filter Design (Basic)

	Data Prov	acting Surgets	Analysis	
		Data Processing Soccess		
Step3:dBuV	1. EUT Impedance@ 2. 제 입력시 달려 별 압력하며 주세요	1. EUT Impediated/201를 구취했습니다. 2. 제 입력시 열려 방법으로 다시 일찍하며 구세요.		
			CM	
	Freq	204 кнг	Step1	
X	LevelT	81.75 dBuV	Step2	
	LavelZ	52.81 dBuV		
	ZN	0.749 k≎	51ep3	
	Eng		DM	

unu He	commend E	Bement		10000		Analysis
-10		Ľ	्य	Data Proces	sing Success.	ZN Find
-30	NZ			2 제 입역시 목표 (8)	2박후 (NF 클릭터세요.	Element
-40	V			Freq	81.75 abuv	lummed serve
-50				Level	0.749 kn	migrecamen
				목표손실값	25 aB	
				Level-손실값	56.75 devV	
				추천용향	10.39 mH	-
				Impedance	13.32 km	

Rio Danie Eilter			E D B
basic Filter	10nH		Analysis
	LISN	EUT	ZN Find
			Element
+V			
+	Common Coil	Y-Cap	CM
		10.00	
	4	10.39 mH	-
	Le	15 p≠	
	Lep	110 ko	Impedance
	La	10 m2	and barrense
			1000